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Variational approach to quantum state
tomography based on maximal entropy formalism
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Quantum state tomography is an integral part of quantum computation and offers the starting point for

the validation of various quantum devices. One of the central tasks in the field of state tomography is to

reconstruct, with high fidelity, the quantum states of a quantum system. From an experiment on a real

quantum device, one can obtain the mean measurement values of different operators. With such data as

input, in this report we employ the maximal entropy formalism to construct the least biased mixed

quantum state that is consistent with the given set of expectation values. Even though, in principle, the

reported formalism is quite general and should work for an arbitrary set of observables, in practice we

shall demonstrate the efficacy of the algorithm on an informationally complete (IC) set of Hermitian

operators. Such a set possesses the advantage of uniquely specifying a single quantum state from which

the experimental measurements have been sampled and hence renders the rare opportunity not only to

construct a least-biased quantum state but even replicate the exact state prepared experimentally within a

preset tolerance. The primary workhorse of the algorithm is reconstructing an energy function which we

designate as the effective Hamiltonian of the system, and parameterizing it with Lagrange multipliers, according

to the formalism of maximal entropy. These parameters are thereafter optimized variationally so that the

reconstructed quantum state of the system converges to the true quantum state within an error threshold. To

this end, we employ a parameterized quantum circuit and a hybrid quantum-classical variational algorithm to

obtain such a target state, making our recipe easily implementable on a near-term quantum device.

1 Introduction

The method of uniquely characterizing the quantum mechan-
ical state of a quantum system based on a series of measure-
ments of an informationally complete (IC) set of Hermitian
operators is called quantum state tomography (QST)1–5 and
forms an important basis for testing and validating quantum
devices. However, traditional approaches to QST are being
exhausted to their limits6 because of certain limitations that
accompany those approaches. Some of these limitations corre-
spond to the exponential scaling of traditional QST techniques
with the system size, which in turn require exponential
amounts of storage and processing power to carry out the
computations. Along with this, since we are in the era of noisy
intermediate-scale quantum (NISQ)7 devices, the fidelity of

measurements is also a limiting factor for performing state
tomography efficiently since noisy measurements can lead to
low fidelity of the reconstructed quantum state.8 Another
challenging task within the domain of QST is to reconstruct
high fidelity quantum states9 that can be used as a starting
point while addressing problems in the field of condensed-
matter physics and also in the validation of quantum
technologies.10 Several research approaches have already been
proposed that attempt to address one or other limitation, which
have paved the way for further advancements in this field. Some
of these tomographic techniques include maximum likelihood
estimation (MLE),11,12 Bayesian mean estimation (BME),13,14

quantum overlap tomography,15 shadow tomography,16,17

neural network tomography,18–22 and others.23–26 In our pre-
vious work we proposed a method of QST based on the
formalism of maximal entropy from an incomplete set of
measurements.27,28 With that motivation, this research is an
attempt to address the challenge of quantum state preparation
in the field of QST based on a variational approach that can be
easily implemented on a near-term quantum device.

The maximal entropy formalism24,29,30 provides the most
unbiased probability distribution, and is based on maximiza-
tion of the von Neumann entropy of the system, subject to the
constraints of the problem.23,31–33 As a natural consequence,
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when combined with the method of Lagrange multipliers it
leads to an expression of the density operator, given by eqn (1),
that can serve as an optimal candidate for variational Gibbs
sampling.9 Inspired by this, the current work focuses on
reconstructing the quantum state of a system, represented by
the quantum Gibbs state and based on the formalism of
maximal entropy, from the mean measurement values of an
IC set of Hermitian operators. Sampling from a probability
distribution corresponding to the quantum Gibbs state plays an
important role in a variety of diverse fields within and not
limited to many-body physics,10,34 quantum simulations,35

quantum optimization,36 and quantum machine learning.37,38

However, preparing the Gibbs state of a given Hamiltonian at
arbitrary low temperature is not an easy task39 and various
approaches have been proposed, both classical and
quantum,40–43 to prepare the Gibbs state under certain speci-
fied conditions. Some of these techniques include algorithms
based on quantum rejection sampling,44 dynamics
simulation,45,46 and dimension reduction,47 but the overhead
quantum resource cost of implementing these approaches is
very high and thus not suitable for execution on near-term
quantum devices. In order to find applications of quantum
algorithms on NISQ devices the underlying quantum circuit
should be shallow with a low circuit depth and a low number of
qubits. Variational quantum algorithms (VQAs)48 are one such
class of hybrid quantum-classical algorithms that follow a
heuristic approach based on the variational principle, and they
have been quite popular in the recent years49–54 owing to their
implementation on NISQ devices with shallow quantum
circuits.

To prepare a quantum Gibbs state on a NISQ device using
VQAs, several methods have been proposed.55–60 In this work,
we employed the approach of Wang et al.39 wherein the loss
function for preparing the Gibbs state on the quantum circuit
involves the truncation of the Taylor series for the entropy, and
which has been shown to prepare the Gibbs state for a given
Hamiltonian with a fidelity of over 99%. The physical Hamilto-
nian of the system is unknown and is in fact unnecessary in
this protocol. One only has access to the expectation values of
the arbitrary set of Hermitian operators. In principle, using the
formalism one can generate a least-biased quantum state that
is consistent with such an arbitrary and even incomplete set of
mean measurements, yet in this report we use an IC set for
testing and validation with the hope of affording a near-exact
reconstruction of the unknown pure quantum state used for
sampling. This is attained by constructing a Hermitian matrix
H, parameterized by Lagrange multipliers. The latter serve as a
proxy Hamiltonian for the construction of the Gibbs state that
represents the tomographic reconstruction of the state of the
quantum system.

The hybrid quantum-classical tomographic protocol pre-
sented in this paper involves the application of shallow para-
meterized quantum circuits and is experimentally realizable on
current-to-near-term quantum hardware. This in itself is advan-
tageous over certain other tomographic protocols11–14 as, upon
optimization, the state is directly prepared on the quantum

circuit and can be used further for quantum applications as per
the requirement. Also, certain neural network-based
state tomographic models work really well for real and
entangled many-body quantum states, although their perfor-
mance suffers for quantum states generated from random
unitary operations.18,19 As opposed to this, our variational
approach to tomography is able to reconstruct, with high
fidelity, not just real quantum states but also complex states
with varying levels of entanglement as shown later in Fig. 6. The
methodology is elaborately discussed in Section 2. To validate
the proposed approach, the formalism is implemented in the
IBM Qiskit61 software development kit, and the results corres-
ponding to the fidelity and trace distance between the recon-
structed quantum state and the true state are shown in
Section 3.

2 Methodology

The reconstruction of an unknown quantum state requires the
information of a complete set of observables that are obtained
through experimental measurements of Hermitian operators –
usually defined as positive-operator-valued measures (POVMs).
The formalism of maximal entropy provides a unique charac-
terization of the quantum state subject to the expectation
values of a given set of operators that serve as the constraints
of the problem. It also ensures that the Von Neumann entropy
of the proposed distribution is maximum under the given
constraints. The maximal entropy formalism when combined
with the method of Lagrange multipliers lk A C2,24,30 yields the
following expression for the density operator of the unknown
quantum state:23,33

r̂ ¼ 1

Zðl1; . . . ; lkÞ
exp �

X
k

lk f̂ k

( )
(1)

where f̂k corresponds to the operators whose expectation values

are known, and Zðl1; . . . ; lkÞ ¼ Tr exp �
P
k

lk f̂ k

� �� �
ensures

normalization as Tr(r̂) = 1. In general, the formalism of max-
imal entropy outputs a mixed state that is parameterized by the
Lagrange multipliers as shown in eqn (1). In our approach,
since the target state is pure, these Lagrange multipliers are
optimized such that the initial mixed state from the recipe
gradually approaches idempotence during the training process
and hence converges within an e-neighborhood of the pure
target state with e being the error tolerance specified by the
user. For example, consider the case a 2-qubit quantum system
that can be uniquely described by the informationally complete
(IC) set of Hermitian operators given by:

{|1ih1|, |2ih2|, |3ih3|, |4ih4|, (|1ih2| � |2ih1|), (|1ih3| � |3ih1|),
(|1ih4| � |4ih1|), (|2ih3| � |3ih2|), (|2ih4| � |4ih2|), (|3ih4| �

|4ih3|)}. (2)

The expectation values of the four initial operators corre-
spond to the probabilities, and the rest are the coherences of
the 2-qubit quantum system.32 The IC set of these operators can
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be obtained using linear combinations of Pauli string operators
(sx, sy, sz, and si):

27,62,63

x11 ¼ 1j i 1h jh i ¼ 1

4
ðsz2sz1 þ sz2si1 þ si2sz1 þ si2si1Þ

x12 ¼ 1j i 2h j þ 2j i 1h jh i ¼ 1

2
ðsz2sx1 þ si2sx1Þ

x22 ¼ 2j i 2h jh i ¼ 1

4
ðsz2sz1 � sz2si1 þ si2sz1 � si2si1Þ

and so on.
Analogous to the maximal entropy formalism, parameter-

ized by a single parameter b = 1/kBT where kB is the Boltzmann’s
constant and T is the temperature, the quantum Gibbs state for
a given Hamiltonian H is defined as:

r̂ ¼ expf�bHg
trðexpf�bHgÞ: (3)

Constructing the Gibbs state of a given Hamiltonian on a
parameterized quantum circuit requires minimization of the
Helmholtz free energy described by the function:

F(r) = tr(rH) � b�1S(r) (4)

where S(r) = �tr(r ln r) corresponds to the von Neumann
entropy of r. However, the most challenging part of construct-
ing the loss function that minimizes the free energy of the
Hamiltonian is estimating the entropy of the parameterized
quantum state.64 In this work, to address the problem we
adopted the method proposed by Wang et al.39 wherein they
used the Taylor series of entropy and truncated it at order K
and, therefore, the truncated free energy is set as the loss

function of the variational quantum algorithm. This method
is practical in its implementation on a near-term quantum
device as, essentially, the loss function involves estimating
higher-order state overlaps, tr(rk), that correspond to the trun-
cated von Neumann entropy and can be carried out on a
quantum device using swap tests.55,65–68

The core idea of the current research work stems from the
combination of eqn (1) and (3), since in eqn (1) we are
interested in maximizing the entropy by optimizing the
unknown Lagrange multipliers lk according to the constraints
of the expectation values of the set of Hermitian operators, and
in eqn (3) we want to optimize the parameters of the quantum
circuit to minimize the free energy that yields the quantum
Gibbs state for a particular Hamiltonian. In our methodology,
the exponent term in eqn (1) is a Hermitian matrix H that
constitutes the Hamiltonian for which the Gibbs state given by
eqn (3) is constructed on a quantum circuit using a variational
algorithm. Thus, the hybrid variational quantum algorithm
that is employed basically involves two levels of optimization
that are termed the inner and outer optimization levels, as
shown in Fig. 1. For a fixed set of Lagrange multipliers lk, the
Hamiltonian H is constructed and passed onto the inner
optimization level where the circuit parameters are variation-
ally optimized using the truncated free energy as the loss
function to yield a quantum Gibbs state corresponding to H.
The constructed Gibbs state is then sent to the outer optimiza-
tion level where the expectation values of the set of Hermitian
operators are computed using the generated Gibbs state and
then the Lagrange multipliers lk are updated so as to minimize
the mean square error between the generated and true expecta-
tion values of the POVMs. The updated Lagrange multipliers

Fig. 1 Hybrid quantum–classical variational algorithm for quantum state tomography based on the formalism of maximal entropy.
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yield the new proxy Hamiltonian H that is again sent back to
the inner optimization level, and this process continues
until convergence of the generated expectation values
to the true values. This variational approach to QST based on
maximal entropy is theoretically generalizable to any number of
qubits.

The variational quantum circuit comprises of n-qubits that
correspond to the size of the quantum system and also an
additional ancilla qubit. The circuit incorporates a series of
parameterized single qubit rotational gates on every qubit, and
each qubit is entangled to the next qubit using controlled-NOT
(CNOT) gates. This sequence of rotation and CNOT gates is
repeated depending on the expressivity that is required to
obtain high fidelity of the prepared quantum states. The scaling
of the algorithm in terms of quantum resource allocation is
strictly polynomial, since to reconstruct a generic n-qubit pure
quantum state we require n + 1 qubits and O (Dn) quantum
gates wherein D is the depth (number of repeating layers) of the
circuit ansatz used.

Using the aforesaid procedure, in this work, we were able to
obtain a high fidelity of 0.99 by setting D = 2 for a two-qubits
system and D = 6 for a six-qubits quantum system. The choice
of the single qubit rotational gates depends on whether the
reconstructed state needs to be real or complex. In the case of
real quantum states, parameterized Ry gates can be used;
otherwise, for generalized complex states, one can choose Rx

gates in the sequence.

3 Results and discussion

In this work we propose a variational approach based on
maximal entropy formalism to perform quantum state tomo-
graphy on a near-term quantum device. This procedure outputs
a reconstructed quantum state that is prepared on a parame-
terized quantum circuit using the expectation values of an IC
set of Hermitian operators as input. The approach is tested and
validated through numerical simulations conducted on IBM’s
Qiskit61 framework using its prototype quantum simulators for
quantum systems consisting of up to 6 qubits. There are

various backends available in Qiskit, and we used the noise-
free statevector_simulator backend to corroborate the theory.

Different quantum circuits ranging from 2 to 6 qubits and
consisting of one and two qubit quantum gates, such as
rotational, Hadamard, CNOT gates, etc., are used to prepare
the sample states whose measurement statistics are reproduced
using the reconstructed quantum state from the proposed
maximal entropy based variational approach. Sample 4-qubit
and 6-qubit quantum circuits are shown in Fig. 2. As discussed
in Section 2, at the end of full execution of the inner optimiza-
tion level, a quantum Gibbs state is generated that is used to
calculate the expectation values of the considered Hermitian
operators. The mean square error (MSE) between the generated
and the true expectation values serve as the loss function for
updating the Lagrange multipliers in the outer optimization
level. The MSE loss is plotted as a function of the number of
epochs in Fig. 3 for one example quantum state in each case of
n-qubits (n = 2–6). As can be seen in Fig. 3, the MSE loss
converges to zero faster for smaller systems and the conver-
gence becomes more erratic as the size of the quantum system
increases.

To perform quantum state tomography it is imperative that
the reconstructed quantum state should be in close agreement
with the true state. To demonstrate this, in the state prepara-
tion circuit, we also change the parameters of the single-qubit
unitaries randomly for 20 different quantum states of n-qubits
(n = 2–5) and 5 different quantum states for n = 6 qubits,
keeping the number of CNOT gates fixed in each case. Obser-
vables from these states were subsequently used to train our
algorithm and the corresponding fidelity of reconstruction was
recorded. The latter is plotted as a function of the number of
qubits (n) in Fig. 4. The variance associated with the recon-
struction is indicated by the error bars of the box plots. In all
cases we see that the lowest fidelity attained is 0.93. To show
the convergence of fidelity with the number of epochs, a plot of
fidelity between the reconstructed quantum state and the true
state as a function of the number of epochs is shown in Fig. 5
for the different quantum systems with varying numbers of
qubits for a single quantum state in each case. The figure
shows the convergence of the reconstructed state to the true

Fig. 2 Sample 4-qubit (left) and 6-qubit (right) quantum circuits for which the quantum states are reconstructed using the proposed approach based on
maximal entropy formalism.

Paper PCCP



28874 |  Phys. Chem. Chem. Phys., 2022, 24, 28870–28877 This journal is © the Owner Societies 2022

state as the Lagrange multipliers are updated with each step,
and the fidelity approaches 1.0 near the end of the optimization
cycle. Another measure to test the performance of our approach
is the trace distance between the true state (s) and the recon-
structed quantum state (r). The trace distance, which is given

by Tðr; sÞ ¼ 1

2
r� sk k1, is a measure of the closeness between

two states. For the converged set of l parameters for the same
states considered for the fidelity plot, Fig. 5 shows the trace
distance between the reconstructed quantum state and the true
state, and as can be seen, the trace distance is below 0.05,
which also validates the successful reconstruction of the
quantum state.

To show the reconstruction accuracy of our model with
respect to varying levels of entanglement within the system,
we consider a 4-qubit system and vary the parameters of the

rotational gates as well as the number of CNOT gates (i.e.,
introducing different degrees of correlation among the sub-
system qubits) in the state preparation unitary. A prototypical
representative of such a quantum circuit for the validation of
our approach is shown in Fig. 2(left). We compute the entan-
glement entropy of a 2-qubit reduced density matrix (2-RDM),
defined by S(2r) = �Tr(2r ln(2r))/2 ln 2, for each such quantum
state. We also use observables sampled from each such quan-
tum state to variationally train our algorithm and create a
maximal-entropy representation of the target state. A plot for
the fidelity of operation vs. S(2r) is displayed in Fig. 6. We see
that the performance of our algorithm is a non-monotonic
function of S(2r). The plot also explicitly shows that our
algorithm is capable of correctly obtaining the target state with
high fidelity, even when the sub-system entropy on the abscissa
is high, indicating a higher degree of correlation.

4 Concluding remarks

In this research we have shown the successful reconstruction of
the quantum state based on a variational approach to QST
utilizing the formalism of maximal entropy, which can easily be
implemented on a near-term quantum device. The recon-
structed state can reproduce the measurement statistics of
the IC set of Hermitian operators that are considered while
formulating the cost function for updating the variational
parameters of the Hamiltonian arising from maximal entropy.
High levels of fidelity between the converged state and the true
state for all the considered quantum systems, as well as low
values for the trace distance, depict the validation of the
proposed approach for QST. This proposed variational
approach can be applicable to a variety of different directions
where QST is essential. For example, we intend to study this
approach further for analyzing, characterizing, and mitigating
single- and double-qubit quantum gates’ errors while running
computations on prototype quantum devices. Recently, noise
fingerprints developed on a prepared stationary state were used
to identify and understand the underlying noise profile of NISQ
devices that causes the state to develop non-stationary
character.69 This characterizes an effective bath generated by
the noise that exhibits both colored noise and non-Markovian
behavior, and therefore can be used for mitigating noise errors
in quantum simulations. Although our variational approach
has not yet been used for denoising, a possible extension of the
above work in the context of the protocol presented in the paper
could be as follows: given the power-spectral density (PSD) of
the noise (from the analysis of the article cited), can one train
our algorithm using noisy estimates of observables and yet
reconstruct the true state with high precision? It is well-known
that variational algorithms are robust against coherent/para-
metric types of noise,70 but the PSD can include fingerprints of
both incoherent (depolarizing errors) and coherent noise.
Access to the spectral information as contained in the PSD
can characterize the noise and could possibly enable us to
reconstruct observables for the true state via appropriate

Fig. 3 For qubits ranging from 2 to 6, this plot shows the mean square
error (MSE) loss as a function of the number of epochs between the true
expectation values and the generated expectation values of the IC set of
Hermitian operators, obtained using the reconstructed quantum state
upon each step of optimization.

Fig. 4 Fidelity of the reconstructed quantum states with respect to the
true states generated by randomly choosing the parameters of the rota-
tional gates of the prototype quantum circuits for n-qubit (n = 2–6)
systems.
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averaging over the underlying distribution function from which
the noise is sampled. This method can also be used as an
efficient approach for sampling the Gibbs state and, therefore,
can serve as a starting point for preparing targeted quantum
states for quantum simulations.
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